Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism.
نویسندگان
چکیده
Pedospheric nitrate uptake is closely integrated with the nitrogen (N) status and demand of the whole tree. Signaling substances communicating the N demand of the shoot to the roots are required in an integrated regulatory system. Besides phloem mobility, such signal compounds must have the potential to repress or increase nitrate uptake either at the transcriptional or post-transcriptional level. Amino compounds cycling within the tree are involved in the regulation of nitrate uptake. In many tree species, inorganic N is generally assimilated in roots, and amino acids--the direct products of N assimilation--are transported in the xylem to the sites of N demand. If the quantity of amino acids transported to the above-ground parts of the tree exceeds shoot N demand, some amino compounds are reallocated to the roots by phloem transport. Particular amino compounds exert transcriptional and post-transcriptional control over nitrate uptake by roots. Induction of nitrate transporters is mediated by nitrate or nitrite, or both, and possibly also by cytokinins, which cycle within the tree and act as both root-to-shoot and shoot-to-root signals. This review focuses on tree-specific requirements for N regulation and signaling, as well as the link between carbon metabolism and nitrate uptake.
منابع مشابه
Signal interactions in the regulation of root nitrate uptake.
In most aerobic soils, nitrate (NO3(-)) is the main nitrogen source for plants and is often limiting for plant growth and development. To adapt to a changing environment, plants have developed complex regulatory mechanisms that involve short and long-range signalling pathways in response to both NO3(-) availability in the soil and other physiological processes like growth or nitrogen (N) and ca...
متن کاملDancing with Hormones: A Current Perspective of Nitrate Signaling and Regulation in Arabidopsis
In nature and agriculture, nitrate availability is a main environmental cue for plant growth, development and stress responses. Nitrate signaling and regulation are hence at the center of communications between plant intrinsic programs and the environment. It is also well known that endogenous phytohormones play numerous critical roles in integrating extrinsic cues and intrinsic responses, regu...
متن کاملAssessment Agro-Physiological Traits Response of Green Bean to Different Level of Nitrogen, Potassium and Zinc Fertilizers
Nutritional management is an important factor in the success of crop production. In order to evaluate different level of nitrogen, potassium and zinc fertilizers on agro physiological characteristics of green bean a field experiment was conducted as split-plot based randomized complete block design in three replications, in Varamin university field research during 2011. The main plot included u...
متن کاملShoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition
Coordination of shoot photosynthetic carbon fixation with root inorganic nitrogen uptake optimizes plant performance in a fluctuating environment [1]. However, the molecular basis of this long-distance shoot-root coordination is little understood. Here we show that Arabidopsis ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor that regulates growth in response to light [2, 3], is a shoot-t...
متن کاملStress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice.
The effects of water deficit on carbon and nitrogen metabolism were investigated in flag leaves of wild-type and transgenic rice (Oryza sativa japonica 'Kitaake') plants expressing ISOPENTENYLTRANSFERASE (IPT; encoding the enzyme that mediates the rate-limiting step in cytokinin synthesis) under the control of P(SARK), a maturation- and stress-induced promoter. While the wild-type plants displa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 24 12 شماره
صفحات -
تاریخ انتشار 2004